Secure your digital life™

Silicon PUFs and PUF-based Key Storage

Roel Maes Intrinsic-ID, Eindhoven (NL)

June 6, 2014 Summerschool: Design and security of cryptographic algorithms and devices for real-world applications Šibenik, Croatia

Course and a second

Roots of Trust

Secure your digital life™

Physical Key Storage

- Alternative to NVM-based key storage: PUF-based key storage
- Main advantages:
 - Key not present when device is powered down
 - Key depends on device intrinsic randomness

PUFs: Physically Unclonable Functions

On many levels, PUFs are more like fingerprints than like programmed keys:

Human Fingerprint	PUF	Programmed Key	
Unique per person	Unique per device	No guarantee of uniqueness	
Inherent from birth	Inherent from production	Programmed after production	
Impossible to "clone" humans with the same fingerprints	Infeasible to "clone" devices with the same PUF	<i>Easy</i> to program many devices with the same key	

Silicon PUFs: classification & advantages

• Many PUF(-like) proposals in myriad of materials, techniques, ...

➡ Non-electronic PUFs, e.g. paper-based, optical PUFs, ...

- Advantages of <u>silicon</u> PUFs:
 - Standard manufacturing with implicitly present randomness
 - Completely embedded in evaluating device
 - Easy integration with digital circuits \rightarrow crypto implementations

Secure your digital life™

Silicon PUF Constructions: general idea

Silicon PUF construction =

a silicon circuit whose response (y) is mainly determined by process variations (PV) and the applied challenge (x)

- <u>Ideal</u> silicon PUF: y = f(PV, x)
- Silicon PUFs <u>in practice</u>:
 y = f (PV, x; ...
 PUF behavior
 Temp, V_{dd}, Noise, Device age, ...
 Unreliable
 Deterministic offset, Structural bias ...)
 Biased

Delay-based silicon PUFs

• Silicon process variations randomly affect delay of digital circuits

Arbiter PUF exploits race conditions between identically designed delay lines

Secure your digital life™

Delay-based silicon PUFs

• **Ring Oscillator PUFs** exploit *frequency variability* amongst identically designed ring oscillator circuits

Glitch PUF exploits variability in *glitch behavior* of identically designed combinatorial circuits

Bi-stable memory based PUFs: SRAM PUF

Silicon process variations cause device "mismatch"

• **SRAM PUF** based on mismatch between "matched" invertors in *SRAM*

Bi-stable memory based PUFs: SRAM PUF

• Silicon process variations cause device "mismatch"

• **SRAM PUF** based on mismatch between "matched" invertors in *SRAM*

cell

Typical SRAM array Power-up Pattern

Bi-stable memory based PUFs: other elements

• Similar PUF behavior in other memory cells

Secure your digital life™

Secure your digital life™

Basic PUF properties: uniqueness

Inter-distance = 15 bit = 46.88%

INTRINSIC ID

Secure your digital life™

- Complete (100%) unpredictability = guessing every bit \rightarrow 50% prediction accuracy $H(X) = -\sum p(x) \log_2 p(x)$
- Use <u>entropy</u> to express unpredictability:
 - − 50% accuracy \rightarrow 100% entropy \rightarrow 100% "guessing" and 0% "insight"
 - − 62.5% accuracy \rightarrow 95.4% entropy \rightarrow 95.4% "guessing" and 4.6% "insight"

Unpredictability \rightarrow 95.4% entropy

Secure your digital life™

Basic PUF properties: "physical unclonability"

- Technical infeasibility/impossibility to create "non-unique" PUF instantiations
 - Due to **uncontrollable** random process variations

Secure your digital life™

Silicon PUF-based applications

Device identification

- Device authentication
 - Some variant of:

Cryptographic key generation

Key generation/storage with Silicon PUFs

• Discrepancy between PUF response and crypto key:

- Key Generator:
 - Improves *reproducibility* by taking care of intra-distance of response = correct bit errors
 - Improves *unpredictability* by extracting unpredictable part of response = compress & accumulate entropy

Secure your digital life™

PUF-based key generation: Error correction

Secure your digital life™

PUF-based key generation: Error correction

 Result: reproducibility improves drastically, but unpredictability decreases due to helper data leakage

PUF-based key generation: Entropy extraction

- Result: Sufficient unpredictability achieved by accumulating and compressing response bits
- Extracted key length ≤ total accumulated entropy

Secure your digital life™

PUF-based key generation: Fuzzy Extractor

• Combination of error correction and entropy extraction:

Practical PUF-based key generators

- To give you some idea of realistic systems (from literature):
 - All for <u>128-bit keys</u>:

	PUF type	PUF size	PUF error rate	Error Correction	Key failure rate
Boesch et al., [CHES-2008]	SRAM PUF	3696 bits	15%	Repetition + Golay (hard decision)	10-6
Maes et al., [CHES-2009]	SRAM PUF	1536 bits	15%	Repetition + Reed-Muller (soft decision, multi enroll)	10 ⁻⁶
van der Leest et al., [CHES-2012]	SRAM PUF	2880 bits	15%	Repetition + Golay (soft decision, single enroll)	10-6
Maes et al., [CHES-2012]	Ring Oscillator PUF	848 oscillators	13%	Repetition + BCH (hard decision)	10 ⁻⁹

- PUF error rate significantly affects error correction and PUF size
 - Key failure rate has less impact

Towards PUF-based user applications

Secure your digital life™

PUFs: Recent Developments

- Physical Attacks on PUFs
 - PUFs, like all physical crypto primitives, can be susceptible to physical attacks

• E.g.

- EM analysis on ring oscillator PUFs
- Remanence decay attack on SRAM PUFs
- Photon Emission Analysis (PEA) on SRAM PUFs
- Invasive attacks

[Merli et al., TRUST 2011]
[Oren et al., CHES 2013]
[Helfmeier et al., HOST 2013]
[Nedospasov et al., FDTC 2013]

• Countermeasures are possible

Recent Developments: Aging and Anti-Aging (for SRAM PUFs)

- SRAM PUF "natural aging"
 - Power-up behavior: fastest transistor (of matched pair) closes first
 - NBTI aging: closed transistors become slower over time
 - Result: power-up behavior changes over time hence: <u># bit errors increases over time</u>
- SRAM PUF "anti-"aging
 - Long-term storage of the power-up state inverse reinforces the power-up behavior Result: <u># bit errors decreases over time!</u> [Maes et al., HOST 2014]
 - A similar effect (HCI) can also be applied in an accelerated manner immediately after production to improve the reliability of an SRAM PUF from the start [Bhargava et al, CHES 2013]

Summary

- A silicon PUF is a process variation dependent circuit
 - → effectively a "device fingerprint"
 - **Delay-based** constructions: arbiter PUF, ring oscillator PUF, ...
 - **Memory-based** constructions: SRAM PUF, D flip-flop PUF, ...
 - "Physically unclonable": process variations are beyond manufacturer's control
- PUFs are typically *noisy* and *biased*, crypto keys are not...
 → PUF-based key generator: PUF → KeyGen → Crypto Key
 - Improve robustness with **error-correction** techniques → **helper data**
 - Improve unpredictability with **entropy accumulation**

ппппппппп

Secure your digital life™