
Silicon PUFs and PUF-based Key Storage 
Roel Maes 

Intrinsic-ID, Eindhoven (NL) 
 

June 6, 2014 
Summerschool: 

Design and security of cryptographic algorithms and devices for real-world applications 
Šibenik, Croatia 



Roots of Trust 

Data security 
Entity 

Authentication 
… 

Information Security Objectives 

Symmetric 
Ciphers 

Public Key 
Crypto 

Hash / MAC Protocols … 

Crypto Primitives 

Key Storage 
Secure 

Computation 
Randomness 
Generation 

… 

Execution Primitives 

PUFs TRNGs 
Secure 
Logic 

Shielded 
Storage 

Intrusion 
Detection 

Logistic 
Control 

… 

Physical Primitives 



Physical Key Storage 

• Alternative to NVM-based key storage: 
PUF-based key storage 

• Main advantages: 
• Key not present when device is powered down 

• Key depends on device intrinsic randomness 

Key Storage 

“Shielded” 
Storage 

ROM Fuses Flash Anti-fuses 

Key Storage 

PUF 



PUFs: Physically Unclonable Functions 

• On many levels, PUFs are more like fingerprints than like programmed 
keys: 

Human Fingerprint PUF Programmed Key 

Unique per person Unique per device 
No guarantee of 

uniqueness 

Inherent from birth 
Inherent from 

production 

Programmed after 

production 

Impossible to 

“clone” humans with 

the same fingerprints 

Infeasible to 

“clone” devices with 

the same PUF 

Easy to program 

many devices with 

the same key 



Silicon PUFs: classification & advantages 

• Many PUF(-like) proposals in myriad of materials, techniques, … 

 

 

 

 

 

 

 

• Advantages of silicon PUFs: 
• Standard manufacturing with implicitly present randomness 

• Completely embedded in evaluating device 

• Easy integration with digital circuits → crypto implementations 

PUFs         
Electronic     

PUFs     
Silicon 
PUFs 

Non-electronic PUFs, e.g. paper-based, optical PUFs, … 

Non-silicon PUFs, e.g. impedance variations, RF-based, … 

Based on process variations  
in standard silicon circuits: 
• delay-based 
• memory-based 
• … 

“Intrinsic PUFs” 



Silicon PUFs: process variations 
What you aim for… 

What you get: 

What you design for… 

What you get: 

e.g. speed, power, … 

Silicon Process Variations 



Silicon PUF Constructions: general idea 

• Silicon PUF construction =  
 a silicon circuit whose response (y) is mainly determined by  process 
variations (PV) and the applied challenge (x) 

 

• Ideal silicon PUF: 
  y = f (PV, x) 

 

• Silicon PUFs in practice: 
  y = f (PV, x; …  

     Temp, Vdd, Noise, Device age, …  

     Deterministic offset, Structural bias …) 

Unreliable 

Biased 

PUF behavior 



Delay-based silicon PUFs 

• Silicon process variations randomly affect delay of digital circuits 

 

 

 

• Arbiter PUF exploits race conditions between identically designed delay 
lines 

Arbiter 

Response: 0 1 0 0 1 1 

Challenge: 

Switch Block 

0/1 

Digital 
Circuit 

Digital 
Circuit (1) 

Digital 
Circuit (2) 

Digital 
Circuit (3) 

Process 
variations 



Delay-based silicon PUFs 

• Ring Oscillator PUFs exploit frequency variability amongst identically 
designed ring oscillator circuits 

 

 

 

 

 

• Glitch PUF exploits variability in glitch behavior of identically designed 
combinatorial circuits 

f1 

f2 

? 

≥ 
0, if f1 < f2 

1, if f1 ≥ f2 
(many variants possible…) 

Glitch waveform 

#glitches = odd  
⇨ Response = 1  

#glitches = even  
⇨ Response = 0  Combinatorial 

Logic 
e.g. AES S-box 

Input 
Register 

Toggle 
Flip-flop 

Challenge = input (transition) 



Bi-stable memory based PUFs: SRAM PUF 

• Silicon process variations cause device “mismatch” 

 

 

 

 

• SRAM PUF based on mismatch between “matched” invertors in SRAM 
cell 

 

= 

Matched circuit 

< 

Circuit (1) 

< 
Circuit (2) 

> 

Circuit (3) 

Process 
variations 

DDV

A B 

I2 
I1 > I2 

I1 < I2 

I1 

AV

BV

DDV
Stable(A=1) 

Stable(A=0) 

Metastable 

Power up 

(Power-up behavior) 



Bi-stable memory based PUFs: SRAM PUF 

• Silicon process variations cause device “mismatch” 

 

 

 

 

• SRAM PUF based on mismatch between “matched” invertors in SRAM 
cell 

 

= 

Matched circuit 

< 

Circuit (1) 

< 
Circuit (2) 

> 

Circuit (3) 

Process 
variations 

I1 > I2 

I1 < I2 

AV

BV

DDV
Stable(A=1) 

Stable(A=0) 

Metastable 

Power up 

Typical 
SRAM array 
Power-up  

Pattern 



Bi-stable memory based PUFs: other elements 

• Similar PUF behavior in other memory cells 

Reset 

Response 

Latch Latch 

Latch 

Latch 

preset 

clear 

Response 

Latch PUF D Flip-flop PUF 

“Butterfly” PUF Buskeeper PUF 

(Power-up behavior) 

(Power-up behavior) 



Basic PUF properties: reproducibility 
Name Fingerprint 

Alice 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

Chip PUF response 

A 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 

1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

0 
1 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 

1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

0 
1 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

Alice 

PUF 

A 

Database 

Intra-distance = 2 bit = 6.25% 

Database 



Basic PUF properties: uniqueness 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

1 0 1 1 0 1 1 0 
1 0 1 0 0 

1 1 0 1 
1 0 1 1 1 0 0 0 

0 
1 

0 1 
1 

1 
1 

1 0 1 1 0 1 1 0 
1 0 1 0 0 

1 1 0 1 
1 0 1 1 1 0 0 0 

0 
1 

0 1 
1 

1 
1 

Alice Bob 

A B 

PUF PUF 

Inter-distance = 15 bit = 46.88% 



Basic PUF properties: unpredictability 

• Complete (100%) unpredictability = guessing every bit  
→ 50% prediction accuracy 

• Use entropy to express unpredictability: 

– 50% accuracy → 100% entropy → 100% “guessing” and 0% “insight” 

– 62.5% accuracy → 95.4% entropy → 95.4% “guessing” and 4.6% “insight” 

Chip PUF response 

A 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 

1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

0 
1 A 

PUF 

Eve 

1 0 1 1 

0 

1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 
1 

0 
1 0 1 

1 

1 0 
0 

0 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 

1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

0 
1 

1 0 1 1 

0 

1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 
1 

0 
1 0 1 

1 

1 0 
0 

0 

Accurate Prediction = 20 bits = 62.5% 

Unpredictability → 95.4% entropy 

Insight 
+ 

Guessing 

Database 



• Technical infeasibility/impossibility to create “non-unique” PUF 
instantiations 
• Due to uncontrollable random process variations 

Basic PUF properties: “physical unclonability” 

Regular 
Chip designer 

Silicon Process 
variations 

Chip manufacturer 

M
in

im
iz

e
 

va
ri

ab
ili

ty
 

PUF developer 



Silicon PUF-based applications 

• Device identification 

 

 

• Device authentication 
• Some variant of: 

 

 

• Cryptographic key generation 

PUF 

PUF 

PUF 
CRYPTO: 

Encryption, 
Signing, 

Key wrapping, 
…  

PUF response =  
device ID 

PUF response =  
authentication secret 

PUF challenge 

Key 
Generator PUF response =  

“static” source of entropy  
for key generation 

Embedded on chip 



Key generation/storage with Silicon PUFs 

• Discrepancy between PUF response and crypto key: 

 

 

 

 

 

 

 

• Key Generator: 

1. Improves reproducibility by taking care of intra-distance of response = 
correct bit errors 

2. Improves unpredictability by extracting unpredictable part of response = 
compress & accumulate entropy 

 

PUF 

 Reproducible: 
 e.g. 3% intra-distance 
 Unpredictable: 
 e.g. 70% entropy 

 Reproducible: 
 0% failure rate 
 Unpredictable: 
 100% entropy 

??? Key Generator PUF Response Secure Key 



PUF-based key generation: Error correction 

Helper Data 

1 

1 
0 

0 

1 1 1 1 0 0 0 0 

PUF PUF Response 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 

1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

1 
1 

1 

1 
0 

1 

1 1 1 1 0 0 0 1 

1 

1 
0 

0 

1 1 1 1 0 0 0 0 

• Intra-distance = 1 bit 
• Entropy = 70% = 22.4 bit 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

PUF Response 



PUF-based key generation: Error correction 

Helper Data 

1 

1 
0 

0 

1 1 1 1 0 0 0 0 

PUF PUF Response 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 

1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

1 
1 

1 

1 
0 

1 

1 1 1 1 0 0 0 1 

1 

1 
0 

0 

1 1 1 1 0 0 0 0 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

Correct 

• Intra-distance = 1 bit 
• Entropy = 70% = 22.4 bit 

• Intra-distance = 0 bit 
• Entropy Left = 10.4 bit 

1 1 1 1 0 0 0 1 

1 

1 
0 

1 
1 0 1 1 0 1 1 0 

1 0 1 0 0 0 0 0 
1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

PUF Response 
1 

• Entropy Loss = 12 bit 

• Result:  reproducibility improves drastically,  
   but unpredictability decreases due to helper data leakage 



PUF-based key generation: Entropy extraction 

• Result: Sufficient unpredictability achieved by accumulating and  
  compressing response bits 

• Extracted key length ≤ total accumulated entropy 

 
 
 
 
 

Compress 

1 0 0 1 1 0 1 0 1 0 
0 1 1 0 1 0 0 1 0 0 

0 1 1 1 1 0 0 0 1 0 
1 0 1 1 0 1 1 0 

1 0 1 0 0 0 0 0 
1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 

1 0 1 1 0 1 1 0 
1 0 1 0 0 

1 1 0 1 
1 0 1 1 1 0 0 0 

0 
1 

0 1 
1 

1 
1 

1 

0 

1 

0 
1 1 0 

1 

0 1 
0 

1 
1 

0 

1 
0 1 1 1 

0 
0 

0 
0 

1 
0 

1 
1 

1 
1 

0 

0 

1 

PUF Response Length: 96 bit 
Accumulated Entropy: 31.2 bit 

Key Length: 30 bit 

Corrected PUF Response Secure Key 



PUF-based key generation: Fuzzy Extractor 

• Combination of error correction and entropy extraction: 

PUF 

1 1 1 1 0 0 0 0 

Helper Data 

1 

1 
0 

0 

1 1 1 1 0 0 0 0 

Key Generator 

1 

1 
0 

0 

1 0 1 1 0 1 1 0 
1 0 1 0 0 0 0 0 

1 1 1 1 0 0 1 0 
1 0 1 1 1 0 0 0 



Practical PUF-based key generators 

• To give you some idea of realistic systems (from literature): 
• All for 128-bit keys: 

 

 

 

 

 

 

 

• PUF error rate significantly affects error correction and PUF size 
• Key failure rate has less impact 

PUF type PUF size PUF error rate Error Correction Key failure rate 

Boesch et al., 
[CHES-2008] 

SRAM PUF 
3696 bits 15% 

Repetition + Golay  
(hard decision) 

10-6 

Maes et al.,  
[CHES-2009] 

SRAM PUF 
1536 bits 15% 

Repetition + Reed-Muller  
(soft decision, multi enroll) 

10-6 

van der Leest et al., 
[CHES-2012] 

SRAM PUF 
2880 bits 15% 

Repetition + Golay  
(soft decision, single enroll) 

10-6 

Maes et al.,  
[CHES-2012] 

Ring Oscillator PUF 848 
oscillators 

13% 
Repetition + BCH  

(hard decision) 
10-9 



Towards PUF-based user applications 

Key Gen 

PUF 
Technology 

KMS: Key 
Management  

System 

User keys / Key codes 

Plaintext / Ciphertext 

KMS 

Encrypt/ 
Decrypt 

Cloud Storage 
Provider 

Crypto 
KMS 

File Manager 
Integration 

User data 

R&D into PUF constructions 
and PUF-based key generators 

Integration of PUF-based 
key generators with  

crypto/security 
(e.g. key management,  

encryption, …) 

Development of end-user 
applications using 

PUF-enabled crypto/security 
(e.g. secure cloud storage, …) 



PUFs: Recent Developments 

• Physical Attacks on PUFs 
• PUFs, like all physical crypto primitives, can be susceptible to physical attacks 

 

• E.g. 
• EM analysis on ring oscillator PUFs    [Merli et al., TRUST 2011] 

• Remanence decay attack on SRAM PUFs   [Oren et al., CHES 2013] 

• Photon Emission Analysis (PEA) on SRAM PUFs [Helfmeier et al., HOST 2013] 

• Invasive attacks        [Nedospasov et al., FDTC 2013] 

 

• Countermeasures are possible 



Recent Developments: Aging and Anti-Aging (for SRAM PUFs) 

• SRAM PUF “natural aging” 
• Power-up behavior: fastest transistor (of matched pair) closes first 

• NBTI aging:   closed transistors become slower over time 

• Result:   power-up behavior changes over time 
     hence: # bit errors increases over time 

 

• SRAM PUF “anti-”aging 
• Long-term storage of the power-up state inverse reinforces the power-up behavior 

Result: # bit errors decreases over time!      [Maes et al., HOST 2014] 

• A similar effect (HCI) can also be applied in an accelerated manner immediately after 
production to improve the reliability of an SRAM PUF from the start 
[Bhargava et al, CHES 2013] 



Summary 

• A silicon PUF is a process variation dependent circuit 
→ effectively a “device fingerprint” 
• Delay-based constructions: arbiter PUF, ring oscillator PUF, … 

• Memory-based constructions: SRAM PUF, D flip-flop PUF, … 

• “Physically unclonable”: process variations are beyond manufacturer’s control 

 

• PUFs are typically noisy and biased, crypto keys are not… 
 → PUF-based key generator: PUF → KeyGen → Crypto Key 
• Improve robustness with error-correction techniques → helper data 

• Improve unpredictability with entropy accumulation 

 

 

 




